Solving ill-posed Image Processing problems using Data Assimilation. Application to optical flow
نویسندگان
چکیده
Data Assimilation is a methodological framework used in environmental sciences to perform forecasts with complex systems such as meteorological, oceanographic and air quality models. Data Assimilation requires the resolution of a system with three components: one describing the temporal evolution of the state vector, one coupling the observations and the state vector, and one defining the initial condition. In this article we use this mathematical framework to study a class of ill-posed Image Processing problems, which are usually solved using regularization techniques. To this end, the ill-posed problem is formulated according to the three-component system of the Data Assimilation framework. To illustrate the method, an application for computing optical flow is described. Key-words: data assimilation, iill-posed problem, regularization, image assimilation, optical flow, motion. in ria -0 02 64 66 1, v er si on 4 19 J ul 2 00 8 Résolution des problèmes mal posés du traitement d’image par Assimilation de Données. Application au flot optique Résumé : L’Assimilation de Données est un cadre méthodologique utilisé en sciences de l’environnement pour la prédiction des systèmes complexes, que sont les modèles météorologiques, océanographiques, ou encore de qualité de l’air. L’Assimilation de Données opère en résolvant un système à trois composantes: une première équation décrit l’évolution temporelle du vecteur d’état; une seconde équation décrit la relation entre le vecteur d’état et l’observation; enfin, une dernière équation décrit la condition initiale. Dans ce rapport, nous utilisons ce cadre mathématique pour l’étude des problèmes mal posés du traitement d’image, habituellement résolus par des techniques de régularisation. Pour cela, le problème est formulé au moyen du système à trois composantes de l’Assimilation de Données. Comme illustration, cette approche est appliquée au calcul du flot optique. Mots-clés : assimilation de données, problème mal posés, régularisation, assimilation d’images, flot optique, mouvement. in ria -0 02 64 66 1, v er si on 4 19 J ul 2 00 8 Data Assimilation and Image Processing 3
منابع مشابه
Solving Ill-posed Problems using Data Assimilation - Application to Optical Flow Estimation
Data Assimilation is a mathematical framework used in environmental sciences to improve forecasts performed by meteorological, oceanographic or air quality simulation models. Data Assimilation techniques require the resolution of a system with three components: one describing the temporal evolution of a state vector, one coupling the observations and the state vector, and one defining the initi...
متن کاملResolution of sharp fronts in the presence of model error in variational data assimilation
We show that data assimilation using four-dimensional variation (4DVar) can be interpreted as a form of Tikhonov regularisation, a very familiar method for solving ill-posed inverse problems. It is known from image restoration problems that L1-norm penalty regularisation recovers sharp edges in the image more accurately than Tikhonov, or L2-norm, penalty regularisation. We apply this idea to 4D...
متن کاملRegularization Techniques for Ill-posed Inverse Problems in Data Assimilation
Optimal state estimation from given observations of a dynamical system by data assimilation is generally an ill-posed inverse problem. In order to solve the problem, a standard Tikhonov, or L2 , regularization is used, based on certain statistical assumptions on the errors in the data. The regularization term constrains the estimate of the state to remain close to a prior estimate. In the prese...
متن کاملEdge-preserving Models and Efficient Algorithms for Ill-posed Inverse Problems in Image Processing
Saquib, Suhail S. Ph. D., Purdue University, May 1997. Edge-Preserving Models and Efficient Algorithms for Ill-Posed Inverse Problems in Image Processing. Major Professor: Charles A. Bouman. The goal of this research is to develop detail and edge-preserving image models to characterize natural images. Using these image models, we have developed efficient unsupervised algorithms for solving ill-...
متن کاملA regularization method for solving a nonlinear backward inverse heat conduction problem using discrete mollification method
The present essay scrutinizes the application of discrete mollification as a filtering procedure to solve a nonlinear backward inverse heat conduction problem in one dimensional space. These problems are seriously ill-posed. So, we combine discrete mollification and space marching method to address the ill-posedness of the proposed problem. Moreover, a proof of stability and<b...
متن کامل